Hp 50g Graphing Calculator Instrukcja Użytkownika Strona 192

  • Pobierz
  • Dodaj do moich podręczników
  • Drukuj
  • Strona
    / 887
  • Spis treści
  • BOOKMARKI
  • Oceniono. / 5. Na podstawie oceny klientów
Przeglądanie stron 191
Page 5-15
[SPC] entry, and then press the corresponding modular arithmetic function. For
example, using a modulus of 12, try the following operations:
ADDTMOD examples
6+5
-1 (mod 12) 6+6 0 (mod 12) 6+7 1 (mod 12)
11+5
4 (mod 12) 8+10 -6 (mod 12)
SUBTMOD examples
5 - 7
-2 (mod 12) 8 – 4 4 (mod 12) 5 –10 -5 (mod 12)
11 – 8
3 (mod 12) 8 - 12 -4 (mod 12)
MULTMOD examples
6
8 0 (mod 12) 98 0 (mod 12) 32 6 (mod 12)
5
6 6 (mod 12) 113 -3 (mod 12)
DIVMOD examples
12/3
4 (mod 12) 12/8 (mod 12) does not exist
25/5
5 (mod 12) 64/13 4 (mod 12)
66/6
-1 (mod 12)
DIV2MOD examples
2/3 (mod 12) does not exist
26/12 (mod 12) does not exist
125/17 (mod 12) ½ 1 with remainder = 0
68/7 ½ -4 (mod 12) with remainder = 0
7/5 ½ -1 (mod 12) with remainder = 0
POWMOD examples
2
3
-4 (mod 12) 3
5
3 (mod 12) 5
10
1 (mod 12)
11
8
1 (mod 12) 6
2
0 (mod 12) 9
9
-3 (mod 12)
In the examples of modular arithmetic operations shown above, we have used
numbers that not necessarily belong to the ring, i.e., numbers such as 66, 125,
17, etc. The calculator will convert those numbers to ring numbers before
Note: DIVMOD provides the quotient of the modular division j/k (mod n),
while DIMV2MOD provides no only the quotient but also the remainder of the
modular division j/k (mod n).
Przeglądanie stron 191
1 2 ... 187 188 189 190 191 192 193 194 195 196 197 ... 886 887

Komentarze do niniejszej Instrukcji

Brak uwag