Hp 50g Graphing Calculator Instrukcja Użytkownika Strona 508

  • Pobierz
  • Dodaj do moich podręczników
  • Drukuj
  • Strona
    / 887
  • Spis treści
  • BOOKMARKI
  • Oceniono. / 5. Na podstawie oceny klientów
Przeglądanie stron 507
Page 16-31
The result is c
n
= (in⋅π+2)/(n
2
⋅π
2
).
Putting together the complex Fourier series
Having determined the general expression for c
n
, we can put together a finite
complex Fourier series by using the summation function (Σ) in the calculator as
follows:
Θ First, define a function c(n) representing the general term c
n
in the complex
Fourier series.
Θ Next, define the finite complex Fourier series, F(X,k), where X is the
independent variable and k determines the number of terms to be used.
Ideally we would like to write this finite complex Fourier series as
However, because the function c(n) is not defined for n = 0, we will be
better advised to re-write the expression as
)
2
exp()(),( X
T
ni
nckXF
k
kn
=
=
π
+= 0)0,,( cckXF
)],
2
exp()()
2
exp()([
1
X
T
ni
ncX
T
ni
nc
k
n
+
=
ππ
Przeglądanie stron 507
1 2 ... 503 504 505 506 507 508 509 510 511 512 513 ... 886 887

Komentarze do niniejszej Instrukcji

Brak uwag