HP Prime Graphing Wireless Calculator Instrukcja Użytkownika Strona 417

  • Pobierz
  • Dodaj do moich podręczników
  • Drukuj
Przeglądanie stron 416
By Parts v
Performs integration by parts of the expression f(x)=u(x)*v'(x), with f(x) as the rst argument and v(x) (or 0)
as the second argument. Specically, returns a vector whose rst element is u(x)*v(x) and whose second
element is v(x)*u'(x). With the optional third, fourth and fth arguments you can specify a variable of
integration and bounds of the integration. If no variable of integration is provided, it is taken as x.
ibpdv(f(Var), v(Var), [Var], [Real1], [Real2])
Example:
ibpdv(ln(x),x) gives x*ln(x)-x
F(b)–F(a)
Returns F(b)–F(a).
preval(Expr(F(var)),Real(a),Real(b),[Var])
Example:
preval(x^2-2,2,3) gives 5
Calculus – Limits
Riemann Sum
Returns an equivalent of the sum of Expr for var2 from var2=1 to var2=var1 (in the neighborhood of n=+∞)
when the sum is looked at as a Riemann sum associated with a continuous function dened on [0,1].
sum_riemann(Expr, [Var1 Var2])
Example:
sum_riemann(1/(n+k),[n,k]) gives ln(2)
Taylor
Returns the Taylor series expansion of an expression at a point or at innity (by default, at x=0 and with
relative order=5).
taylor(Expr,[Var=Value],[Order])
Example:
taylor(sin(x)/x,x=0) returns 1-(1/6)*x^2+(1/120)*x^4+x^6*order_size(x)
Taylor of Quotient
Returns the n-degree Taylor polynomial for the quotient of 2 polynomials.
divpc(Poly1,Poly2,Integer)
Example:
divpc(x^4+x+2,x^2+1,5) returns the 5th-degree polynomial x^5+3*x^4-x^3-2*x^2+x+2
CAS menu 369
Przeglądanie stron 416
1 2 ... 412 413 414 415 416 417 418 419 420 421 422 ... 700 701

Komentarze do niniejszej Instrukcji

Brak uwag