
Smith
Smith normal form of a matrix with coeicients in Z: returns U,B,V such that U and V invertible in Z, B is
diagonal, B[i,i] divides B[i+1,i+1], and B=U*A*V.
ismith(Mtrx(A))
Example:
ismith returns
Factorize
LQ
LQ Factorization. Factorizes a m × n matrix into three matrices L, Q, and P, where {[L[m × n lowertrapezoidal]],
[Q[n × n orthogonal]],[P[m × m permutation]]}, and P*A=L*Q.
LQ(matrix)
Examples:
LQ returns
LSQ
Least Squares. Displays the minimum norm least squares matrix (or vector) corresponding to the system
matrix1*X=matrix2.
LSQ(matrix1, matrix2)
Example:
LSQ returns
LU
LU Decomposition. Factorizes a square matrix into three matrices L, U, and P, where {[L[lowertriangular]],
[U[uppertriangular]],[P[permutation]] }} and P*A=L*U.
LU(matrix)
Example:
LU returns
QR
QR Factorization. Factorizes an m×n matrix A numerically as Q*R, where Q is an orthogonal matrix and R is an
upper triangular matrix, and returns R. R is stored in var2 and Q=A*inv(R) is stored in var1.
QR(matrix A,var1,var2)
Example:
Matrix functions 539
Komentarze do niniejszej Instrukcji