
logarithmic_regression
Given a set of points, returns a vector containing the coeicients a and b of y=a*ln(x)+b, the natural
logarithmic function which best ts the set of points. The points may be the elements in two lists or the rows
of a matrix.
logarithmic_regression(Matrix) or logarithmic_regression(List1, List2)
Example:
logarithmic_regression returns [6.3299…, 0.7207…]
logb
Returns the logarithm of base b of a.
logb(a,b)
Example:
logb(5,2) gives ln(5)/ln(2) which is approximately 2.32192809489
logistic_regression
Returns y, y', C, y'max, xmax, and R, where y is a logistic function (the solution of y'/y=a*y+b), such that
y(x0)=y0 and where [y'(x0),y'(x0+1)...] is the best approximation of the line formed by the elements in the list
L.
logistic_regression(Lst(L),Real(x0),Real(y0))
Example:
logistic_regression([0.0,1.0,2.0,3.0,4.0],0.0 ,1.0) gives [-17.77/(1+exp(-
0.496893925384*x+2.82232341488+3.14159265359* i)),-2.48542227469/(1+cosh(- 0.496893925384*x
+2.82232341488+3.14159265359* i))]
lu
For a numerical matrix A, returns permutation P, L and U such that PA=LU.
lu(Matrix)
Example:
lu([1 2],[3 4]) returns [ [1 2] [[1 0],[3 1]] [[1 2], [0 -2]]]
lvar
Given an expression, returns a list of the functions of the expression which utilize variables, including
occurrences of the variables themselves.
lvar(Expr)
Example:
lvar(e^(x)*2*sin(y) + ln(x)) returns [e^(x) sin(y) ln(x)]
Ctlg menu 441
Komentarze do niniejszej Instrukcji