LinRegrTMeanResp({1, 2, 3, 4}, {3, 2, 0, -2}, 2.5, 0.95) returns {2.5, 0.95, 4.302...,
2, 0.75, 0.193..., −0.083, 1.583...}
LinRegrTPredInt
The linear regression prediction interval for a future response. Given a list of explanatory variable data (X), a
list of response variable data (Y), a future X-value, and a condence level, returns a list containing the
following values in the order shown:
●
X: the given future X-value
●
C: the given condence level
●
DF: the degrees of freedom
●
Ŷ: the mean response for the given future X-value
●
serr Ŷ: the standard error of the mean response
●
serrInter: the standard error of the intercept
●
Lower: the lower bound of the prediction interval for the mean response
●
Upper: the upper bound of the prediction interval for the mean response
LinRegrTPredInt(List1, List2, X-value, Cvalue)
Example:
LinRegrTPredInt({1, 2, 3, 4}, {3, 2, 0, -2}, 2.5, 0.95) returns {2.5, 0.95, 4.302...,
2, 0.75, 0.433..., −1.113..., 2.613...}
LinRegrTTest
The linear regression t-test. Given a list of explanatory variable data (X), a list of response variable data (Y),
and a value for AltHyp, returns a list containing the following values in the order shown:
●
T: the t-value
●
P: the probability associated with the t-value
●
DF: the degrees of freedom
●
β
0
: the y-intercept of the regression line
●
β
1
: the slope of the regression line
●
serrLine: the standard error of the regression line
●
serr Ŷ: the standard error of the mean response
●
serrSlope: the standard error of the slope
●
serrInter: the standard error of the y-intercept
●
r: the correlation coeicient
●
R
2
: the coeicient of determination
The values for AltHyp are as follows:
App menu 409
Komentarze do niniejszej Instrukcji