HP Prime Graphing Wireless Calculator Instrukcja Użytkownika Strona 420

  • Pobierz
  • Dodaj do moich podręczników
  • Drukuj
Przeglądanie stron 419
Numerical Solve
Returns the numerical solution of an equation or a system of equations.
Optionally, you can use a third argument to specify a guess for the solution or an interval within which it is
expected that the solution will occur.
Optionally, you can use a fourth argument to name the iterative algorithm to be used by the solver.
If you are solving for a single variable, your options for an iterative algorithm are bisection_solver,
newton_solver, and newtonj_solver. If you are solving for two variables, your only option is newton_solver.
fSolve(Eq,Var) or fSolve(Expr, Var=Guess)
Examples:
fSolve(cos(x)=x,x,-1..1) returns [0.739085133215]
fSolve([x
2
+y-2,x+y
2
-2],[x,y],[0,0]) returns [1.,1.]
Dierential Equation
Returns the solution to a dierential equation.
deSolve(Eq,[TimeVar],Var)
Example:
desolve(y''+y=0,y) returns G_0*cos(x)+G_1*sin(x)
ODE Solve
Ordinary Dierential Equation solver. Solves an ordinary dierential equation given by Expr, with variables
declared in VectrVar and initial conditions for those variables declared in VectrInit. For example,
odesolve(f(t,y),[t,y],[t0,y0],t1) returns the approximate solution of y'=f(t,y) for the variables t and y with initial
conditions t=t0 and y=y0.
odesolve(Expr,VectVar,VectInitCond,FinalVal,[tstep=Val,curve])
Example:
odesolve(sin(t*y),[t,y],[0,1],2) returns [1.82241255674]
Linear System
Given a vector of linear equations and a corresponding vector of variables, returns the solution to the system
of linear equations.
linsolve([LinEq1, LinEq2,…], [Var1, Var2,…])
Example:
linsolve([x+y+z=1,x-y=2,2*x-z=3],[x,y,z]) returns [3/2,-1/2,0]
Rewrite
lncollect
Rewrites an expression with the logarithms collected. Applies ln(a)+n*ln(b) = ln(a*b^n) for an integer n.
lncollect(Expr)
Example:
372 Chapter 22 Functions and commands
Przeglądanie stron 419
1 2 ... 415 416 417 418 419 420 421 422 423 424 425 ... 700 701

Komentarze do niniejszej Instrukcji

Brak uwag