●
Input range: species the data source; for example A1:D8. It must contain an even number of columns.
Each pair will be treated as a distinct set of data points.
●
model: species the model to be used for the regression:
1 y= sl*x+int
2 y= sl*ln(x)+int
3 y= int*exp(sl*x)
4 y= int*x^sl
5 y= int*sl^x
6 y= sl/x+int
7 y= L/(1 + a*exp(b*x))
8 y= a*sin(b*x+c)+d
9 y= cx^2+bx+a
10 y= dx^3+cx^2+bx+a
11 y= ex^4+dx^3+cx^2+bx+a
●
Conguration: a string which indicates which values you want to place in which row and if you want row
and columns headers. Place each parameter in the order that you want to see them appear in the
spreadsheet. (If you do not provide a conguration string, a default one will be provided.) The valid
parameters are:
—
H (Place column headers)
—
h (Place row headers)
—
sl (slope, only valid for models 1–6)
—
int (intercept, only valid for models 1–6)
—
cor (correlation, only valid for models 1–6)
—
cd (Coeicient of determination, only valid for models 1–6, 8–10)
—
sCov (Sample covariance, only valid for models 1–6)
—
pCov (Population covariance, only valid for models 1–6)
—
L (L parameter for model 7)
—
a (a parameter for models 7-–11)
—
b (b parameter for models 7-–11)
—
c (c parameter for models 8–11)
—
d (d parameter for models 8, 10–11)
—
e (e parameter for model 11)
—
py (place 2 cells, one for user input and the other to display the predicted y for the input)
—
px (place 2 cells, one for user input and the other to display the predicted x for the input)
Example: REGRS(A25:B37,2)
392 Chapter 22 Functions and commands
Komentarze do niniejszej Instrukcji